A generalization of Clausen’s identity
نویسنده
چکیده
Abstract The paper aims to generalize Clausen’s identity to the square of any Gauss hypergeometric function. Accordingly, solutions of the related 3rd order linear differential equation are found in terms of certain bivariate series that can reduce to 3F2 series similar to those in Clausen’s identity. The general contiguous variation of Clausen’s identity is found. The related Chaundy’s identity is generalized without any restriction on the parameters of Gauss hypergeometric function. The special case of dihedral Gauss hypergeometric functions is underscored.
منابع مشابه
Generalizations of Clausen’s Formula and Algebraic Transformations of Calabi–yau Differential Equations
We provide certain unusual generalizations of Clausen’s and Orr’s theorems for solutions of fourth-order and fifth-order generalized hypergeometric equations. As an application, we present several examples of algebraic transformations of Calabi–Yau differential equations.
متن کاملElementary proofs of some q-identities of Jackson and Andrews-Jain
We present elementary proofs of three q-identities of Jackson. They are Jackson’s terminating q-analogue of Dixon’s sum, Jackson’s q-analogue of Clausen’s formula, and a generalization of both of them. We also give an elementary proof of Jain’s q-analogue of terminating Watson’s summation formula, which is actually equivalent to Andrews’s q-analogue of Watson’s formula.
متن کاملClausen's theorem and hypergeometric functions over finite fields
We prove a general identity for a 3F2 hypergeometric function over a finite field Fq, where q is a power of an odd prime. A special case of this identity was proved by Greene and Stanton in 1986. As an application, we prove a finite field analogue of Clausen’s Theorem expressing a 3F2 as the square of a 2F1. As another application, we evaluate an infinite family of 3F2(z) over Fq at z = −1/8. T...
متن کاملOn Generalization of prime submodules
Let R be a commutative ring with identity and M be a unitary R-module. Let : S(M) −! S(M) [ {;} be a function, where S(M) is the set of submodules ofM. Suppose n 2 is a positive integer. A proper submodule P of M is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 R and x 2 M and a1 . . . an−1x 2P(P), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x 2 P...
متن کاملOn strongly J-clean rings associated with polynomial identity g(x) = 0
In this paper, we introduce the new notion of strongly J-clean rings associated with polynomial identity g(x) = 0, as a generalization of strongly J-clean rings. We denote strongly J-clean rings associated with polynomial identity g(x) = 0 by strongly g(x)-J-clean rings. Next, we investigate some properties of strongly g(x)-J-clean.
متن کامل